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A. Yu. Ishlinskii began his scientific career with research on the theory of rolling friction, the results 
of which were described in his candidate’s dissertation (in 1938) [l] and in his first publications [24]. 
He subsequently returned on an analysis of this problem more than once [5,6]. He was in the first ranks 
of researchers who analysed the effect of the two basic sources of resistance to rolling of bodies, i.e. 
the relative slip of the surfaces in the contact region and the hysteresis losses associated with the imperfect 
elasticity of the materials. 

Rolling friction was studied for the first time by Coulomb [7] who, on the basis of experimental 
investigations, proposed that the dependence of the force of rolling friction Ton the radius of the roller 
R and the load on it P should be calculated using the formula T = kPlR, where k is a coefficient which 
is usually known as the “friction shoulder”. This formula was subsequently subjected on many occasions 
to experimental verification for rollers of different diameters and made of different materials. Under 
different conditions of friction, a different dependence of the friction force on the mechanical and 
geometrical characteristics of the interacting bodies was found. This is due to the fact that the factors 
which give rise to resistance to rolling can be different depending on the properties of the materials 
and the conditions of the interaction. 

The classical work of Reynolds [8] is concerned with a detailed study of rolling friction. The results 
of research into the rolling of rubber and steel rollers over the flat surfaces of various materials (glass, 
boxwood, rubber, copper, etc.) were presented in this paper. He established that the actual distance 
covered by a steel roller after a single revolution in rolling over soft rubber is less than the so-called 
geometric distance, which is equal to the length of the deconvolution of its surface. Reynolds explained 
the cause of rolling friction in the cases he studied as being due to the relative slip of points on the 
surfaces of the interacting materials in separate segments of the contact region, as a consequence of 
the deformation of the bodies. Petrov [9] also suggested the same cause of the resistance to the motion 
of wheels on railway track. Partial slip is therefore one of the basic causes of resistance to the rolling 
of bodies. 

Since absolutely elastic bodies do not exist, hysteresis losses in bodies due to their deformation are 
also a source of resistance to rolling. This mechanism of rolling friction was investigated experimentally 
by Tabor [lo]. In the case of inelastic materials, the rolling friction depends very much on the rate of 
rolling. 

Both of these sources of resistance to rolling, as well as the molecular interaction of the contacting 
surfaces [ll], play a major role in the formation of the force of rolling friction, and the specific value 
of each of changes, depending on the physicochemical properties of the materials and the external 
conditions. 

1. FORMULATION OF THE PROBLEM OF THE STEADY ROLLING OF 
DEFORMABLE BODIES, TAKING ACCOUNT OF PARTIAL SLIP IN 

THE CONTACT REGION 

We shall consider the rolling, at an angular velocity o and linear velocity V directed along the x axis, 
of a body along the surface of another body (Fig. 1). As a consequence of the deformation of the 
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Fig. 1 

interacting bodies, there are tangential displacements of a point on the surfaces (y = 0) U&X, z, t) along 
the x axis and u&, z, t) along the z axis (which is directed perpendicular to the plane of the sketch) 
and, also, displacements along the normal to the surface u&, z, t). 

The linear velocity of displacement of a particle, located on the surface of the contacting bodies 
(i = 1,2), which components uti along the x axis and IJ, along the z axis in the system of coordinates 
Onyz associated with the moving body, is given by the following expressions 

uxi = v+svxi+v~+~. Uzi = ~vzi+vi!%+~ 
where SV, and SV, are the projections of the slip velocities of the contacting bodies on to the x and z 
axes. 

The velocities of relative slip S&X, z, t) in the direction of the x axis and S&X, z, t) in the direction of 
the z axis at a point (x, z) of the contact region are determined by the difference in the velocities of the 
particles of the interacting bodies at this point, that is, 

In the case of steady rolling, that is, of uniform motion under constant forces, the elastic displacements 
in the system of coordinates Ovz are independent of time. In this case, au,/& = &,/at = 0 and the 
velocities of the relative slip s,(x, z, t) and S&K, z, t), as well as the components of the displacements and 
stresses, are solely functions of the x and z coordinates. 

In the case of rolling, the whole contact region R is divided into two subregions: a subregion sl, in 
which the particles located on the surfaces of the interacting bodies stick and Q, where they slip. The 
boundary conditions in the contact region are written in the form: 

in the stick subregion, (x, z) E Sz,, there is no slip and the shear stresses 7(x, z) do not exceed a limiting 
value, that is 

s, = s, = 0, Iw, z)l 5 PAX, z) (1.1) 

(p(x, z) is the contact pressure and u is the friction coefficient) 
in the slip subregion, (x, z) E Q, the Coulomb-Amonton law 

la-9 z)l = Pm, z) 

applies and the direction of the shear stresses z(x, z) is opposite to the slip direction, that is 

(1.2) 

7(x, z) s(x, z) 
-=-(s(x,z)I MA z)l (l-3) 
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Note that, in the case of complete sliding, the Coulomb-Amonton law (1.2) holds over the whole of 
the contact region s2. 

The contact condition for the interacting bodies leads to the following relation, which is imposed on 
the displacement z.+ of a point of the surface in a direction normal to it 

Uyl + uy2 = D--fl(4z)+f2(%Z). (X,Z)E fi (1.4 

wherefl(x, 4 andf ( , ) 2 x z are the shape equations of the interacting bodies and D is the approach of 
the bodies in the direction of they axis as a result of their deformation. 

In order to determine the stress distribution and the rolling resistance it is necessary to solve a contact 
problem with the boundary conditions presented above. The major difficulty in solving it arises in 
determining the positions both of the boundaries of the stick and slip zones (there can be several stick 
and slip zones which the contact region). 

2. THE ROLLING OF ELASTIC BODIES 

The stressed state of elastic bodies and the resistance to rolling depend on the difference in the curvatures 
of the bodies in the contact region and the ratio of the moduli of elasticity. Two geometrically identical 
elastic bodies with the same elastic characteristics do not experience resistance to rolling under the action 
of just a normal force, and, at the same time, partial slip does not occur in the contact region. 

The two-dimensional contact problem of the rolling of an elastic cylinder of radius R along a base 
made of the same material under the action of a moment M and a tangential force T, was investigated 
in [12-161. 

The forces and moments acting on a roller (a cylinder), separated into active and reactive forces, 
are shown in Fig. 1. The moment M is in the direction of rotation if the roller is a drive roller and in 
the reverse direction in the case of a slave or braking roller. The contact pressure p(x) and the shear 
stress z(x) constitute reactive forces. All the forces are assumed to be constant along the generatrix of 
the cylinder. The equations 

T = j r(x)dx, 
b b 

P = jp(x)dx, TR = jxp(x)dx+M (2-l) 
--(I -a -a 

hold in the case of the uniform motion of a slave roller, where P is the vertical force acting on the roller, 
and -a and b are the boundaries of the contact region. 

If the materials of the interacting bodies are the same, the shear stresses do not have any effect on 
the distribution of the contact pressure and the sizes of the contact regions, which are determined using 
Herts theory. Partial slip in the contact region occurs due to the difference in the curvatures of the 
interacting bodies. It was shown [12-141 that, in the case of the same elastic materials of contacting 
bodies, only two zones can be formed in the contact region: the stick zone located in front, on the side 
where the roller approaches the base, and then the slip zone. The following shear stress distribution 
z(x) in the contact region (-a, u) was obtained in [12] 

AIn, -aIxIc 
; K= 2(1 -v2) 

[&5?-&a-c)(x-c)], ZE (2.4 
clx<a 

which c is the point where the zone stick changes into the slip zone, E is Young’s modulus and v is 
Poisson’s ratio of the interacting bodies. The relations 

2a = JEP, ‘ec = 1-g. 
Pa’ 

6 - ora-v 
V (2.3) 

have been obtained for the half-width of the contact region and the size of the stick zone where o is 
the angular velocity of rotation of the cylinder and 6 is the creep ratio. 

The shear stress distribution, calculated using formulae (2.2) and (2.3) for T/(pP) = 0.5 is represented 
by curve 1 in Fig. 2. The shear stress distribution in the case of full slip z(x) = w(x) is shown by the 
dashed curve 1. 
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-a clv c a x 
Fig. 2 

The shear force T is connected with the relative slip 6 by the relation 

(2.4) 

Experimental data [16] confirm the location of the stick and slip zones in the contact region obtained 
in [12-141. However, in an investigation of the problem of the interaction of two rotating discs of different 
radii made of the same elastic material, it was shown [17] that, in the case of certain values of the external 
forces, a rolling scheme with three zones in the contact region (a stick zone surrounded by two slip 
zones) is feasible. 

In the case of rolling of two elastic bodies made of different materials, additional slip occurs due to 
the difference in the shear deformations on the interacting surfaces as a consequence of the difference 
in their elasticity constants. 

Ishlinskii’s research [l, 31 was concerned with investigating the rolling contact of a rigid cylinder with 
an elastic base. He used a simplified model of the base (an extension of the Winkler model to the 
compliance accompanying shear), in which the normal uY and tangential U, displacements of point on 
the surface are connected with the pressurep and the shear stresses z acting in the contact region by 
the relations 

uy = (hlK,)p, u, = (hlK*)z (2.5) 

Substituting these expressions into boundary condition (l.l)-(1.4) one can determine the normal and 
shear stress distributions in the contact region and the arrangement of the stick and slip zones in this 
region. In particular, the pressure within the contacting region in this case has a parabolic distribution, 
and the shear stress distribution in the stick zone is linear, which follows from the solution of the ordinary 
differential equation in the stick zone with conditions of continuity of the stresses at the points where 
the stick zone changes into the slip zone or this zone merges into the boundary of the contact region. 
A graph of the shear stress distribution r in the contact region when there is a single stick zone (c,,,, a) 
and a single slip zone (a, c,) is shown in Fig. 2 (curve 2). 

A full analysis of the positions of the stick and slip zones in the contact region and the conditions 
under which a scheme with two zones (a stick zone which is in front, at the leading edge of the contact 
region, changes into a slip zone) and three zones (a stick zone is located between two slip zones) in 
the contact region is feasible, has been carried out [4]. Relations are also given which enable one to 
calculate the resistance to rolling for large and small values of the moment M as well as an approximate 
formula for the maximum value of the force of rolling friction. 

The simplified model of an elastic base used by Ishlinskii to analyse the contact characteristics in the 
problem of the rolling of a cylinder (the two-dimensional formulation) was subsequently used to solve 
three-dimensional problems of the rolling of elastic bodies and, also, to investigate unsteady rolling 
problems and the transient to steady rolling [18, 191. An analysis of the possibility of using simplified 
model (2.5) to investigate contact characteristics in the rolling of elastic bodies, carried out in [19] by 
comparing the results of the solution of problems for an unsimplified model of an elastic base (analytical 
and numerical) with the simplified model, showed that the simplified model enables one to calculate 
the dimensions and locations of the stick and slip zones in the contact region with sufficient accuracy 
(the error is no greater than 15%) as well as the magnitude of the relative slip accompanying rolling. 
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Whereas, in the case of identical elastic properties of contacting bodies, the problem of the rolling 
of a cylinder along a base can reduced to Riemann-Hilbert problem for one analytic function (see below, 
Section 3), the solution of which has the form of (2.2), in the case of dissimilar elastic properties, it is 
necessary to solve the related problem of finding two analytical functions. The problem of an elastic 
cylinder rolling on an elastic base, when there are no constraints whatsoever imposed on the elastic 
properties of the cylinder and the base, has been considered in [20] under the assumption that the contact 
region consists of two zones, that is, of slip and stick zones, and, in the stick zone, it was assumed, as 
in [ 151, that the tangential displacements of the interacting surfaces are equal. The solution was reduced 
to investigating the problem of liner matching for two analytical functions, which was solved by the setting 
up a Gauss differential equation with three singular points. The final expression for the stresses is rather 
complex, which made it difficult to carry out any further analysis of the results. Hence, the analysis of 
the friction forces in the problem of a rigid cylinder rolling on an elastic base and the arrangement of 
the zones where stick and slip occurs in the contact region, which was carried out for the first time by 
Ishlinskii [4] is up to now unique in the investigation of the rolling of the bodies made of materials with 
quite different elastic moduli. 

The three-dimensional problem of the rolling of elastic bodies has been thoroughly investigated in 
the Kalker’s monograph [19], which also contains a historical review of publications in the field of the 
rolling friction of elastic bodies. A variational approach is used to solve three-dimensional contact 
problems [21]. This approach consists of finding the minimum, in the space of permissible functions of 
the shear contact stresses, of a functional of the form 

I = j((SlT + ppS)%S (2.6) 
R 

The equivalence of the variational formulation (2.6) to the problem of the contact of rolling bodies made 
of identical materials with boundary conditions (l.l)-( 1.4) has been proved [22,23]. When the variational 
approach is used, the unknown boundaries of the stick and slip zones are constructed, after solving the 
variational problem, using the velocity field which has been found. In a numerical implementation, the 
variational problem is approximated by a discrete problem of non-linear programming [23]. 

The results of the numerical solution showed that the shape of the contact region accompanying the 
rolling of a sphere on a plane is almost circular. An analysis of the solution [19] in the case of contacting 
bodies made of identical materials established that the shear stress distribution in a line passing through 
the centre of the contact region and collinear with the direction of the action of the traction force T is 
close to the distribution shown in Fig. 2. The results obtained served as a basis for the use of approximate 
methods, the basis of which is the superpositioning of the solutions of the two-dimensional rolling contact 
problem, in solving three-dimensional rolling problems. Thus, in the band theory [24], the contact region 
is divided into thin bands parallel to the direction of rolling. The solution of the problem in a two- 
dimensional formulation is used for each such band, neglecting the interactions between them. A review 
of the different methods of solving three-dimensional rolling problems for elastic bodies made of identical 
materials, on the assumption that the size of the contact region is much smaller than the radii of curvature 
of the interacting bodies, has been given in [23]. 

3. THE ROLLING OF VISCOELASTIC BODIES 

Loading and unloading of the interacting bodies occurs as they roll, which, by virtue of the rheological 
properties of the materials, leads to hysteresis losses. 

In 1938, the problem of a rigid cylinder (a roller) rolling on a viscoelastic base under steady conditions 
was considered by Ishlinskii for the first time. The solution of this problem enables one to calculate 
the moment of rolling friction and to investigate its dependence on the rolling velocity, the load, as 
well as the mechanical and geometrical characteristics of the interacting bodies [2]. Two one-dimensional 
models of the material were used in the approximate solution of the problem. In these models, the 
pressure&) in the contact region is associated with displacement U,(X) of the surface along the normal 
to it by the relations 

p(x) = K,u,(x) + K&4,(X)/& (3.1) 

au,(x)/& = K&x) + k*ap(x)lat (34 

where K,, K, Kl and K2 are constants of the material. 
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In solving the problem, it was assumed that there are no shear stresses in the contact region and that 
the rolling resistance arises solely due to the pressure asymmetry, which leads to the appearance of a 
moment of resistance. It was shown that, in the case of the model (3.1) which possesses a bounded creep, 
the rolling resistance force, at low rolling velocities, is described by the relation 

KVP T=KR 
n 

(3.3) 

and, in the case of high rolling velocities, by 

T=jAl c 1 
l/Z 

(3.4) 

It is curious to note that these two asymptotic formulae, had they been obtained much earlier, could 
have put an end to the heated discussion [25] which arose between Dupuit and Moren at the end of 
the nineteenth century in connection with how the rolling resistance depends on the radius of the roller. 
While Dupuit reckoned that the force T is proportional to R- i” Moren defended another rule: the 
force T is proportional to R-l. 

, 

In the case of a viscoelastic soil, which obeys the law of deformation (3.2), the dependence of the 
friction force on the mechanical and geometrical characteristics of the contacting bodies at high rolling 
velocities I/ obtained by Ishlinskii has the form 

One-dimensional (rod) models for describing the imperfect elasticity of the base when cylindrical 
and spherical bodies roll over it were used later in [26, 271, where the behaviour of a rod under 
compression was described by various first-order differential equations. 

The solution of the problem of a rigid cylinder rolling on a base, which is described by a model of a 
viscoelastic continuum, has been obtained in [28], also with the assumption that there are no shear forces 
in the contact region. The simplest linear medium, for which the relaxation function r(t) has the form 

r(t) = $1 +p<1 -/r)) 
D 

was adopted as the model of the material of the base, where Go is the dynamic shear modulus and T 
is the relaxation time. The contact between two cylinders with different and identical elasticity constants 
has been considered in [29, 301 for the same viscoelastic materials. In this case, solutions were found 
which correspond to a spectrum of relaxation times. It was established that the rolling resistance force 
has a maximum when retardation time of the material is comparable with the contact time. The 
distribution of the normal stresses accompanying the rolling of a viscoelastic cylinder on a base made 
of the same material has been found in [31], for which the relation between the stresses and strains 
was expressed by Volterra integral relations with an exponential kernel. 

The problem of a viscoelastic cylinder rolling on a base of the same material was treated under the 
assumption that the relations between the stresses and strains in a viscoelastic body have the form 

E: = l--v2 v(l+v) * T’T;-Toy, E”-1-v2 v(l+v) * l+v y - -py*-~d,, r:,= T’Zy (3.6) 

where 

a&, 
E; = E;~ - T,Vx, 

&Sij 
0,; = Oij- T,Vx, i = X, y 

Here T, and To characterize the viscous properties of the material, v is Poisson’s ratio and E is the 
long-term modulus of elasticity of the material. For the model under consideration, the instantaneous 
modulus of elasticity is determined by the quantity H = OS, where a = TJT,. Note that, in the case 
of amorphous polymers, a = 105-107, for polymers with a high degree of crystallinity a = lo-102, and 
for ferrous metals. a = 1.1-1.5. 
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It is assumed in the formulation of the problem [32] that the whole contact region (a, b) is subdivided 
into a zone where slip occur (-a, c), and stick zone (c, b) located in front in the direction of the incidence 
of the cylinder. The boundary conditions (l.l)-(1.4) enabled the problem to be reduced to the 
determination of two functions which are analytical in the lower half-plane 

b 

w,(z) = jo,*(t, O)Fz = U,(x,y)-iVl(x,y) (3.8) 
-a 

b 

w,(z) = jt:;(t, O)Fz = U2k Y) - iV2(x, y) P-9) 

-a 

the real and imaginary parts of which satisfy the following conditions on the boundary (y = 0) 

v, = v, = 0, xe (-a, b) 

x-TEV 
u, = - 2J3 ’ v,+pv, = 0, XE (-a,c) (3.10) 

x-T,V 
u, = -X’ 

6 
u, = 2K’ XE (C,b) 

The quantities K and 6 are defined by the last relations of (2.2) and (2.3). The boundary conditions 
(3.10) initially enable one to solve the problem of determining the function wi(z) (3.8) and, subsequently, 
enable one to determine the function w2(z) (3.9) using the function Vi@, 0) which has been found. The 
functions E; and o; on the real axis are expressed in terms of the real imaginary parts of the functions 
wr(z) and ~~(2). The true stresses and displacements which act on the boundary of the half-plane are 
then found from the solutions of differential equations (3.7). Analytical expressions for the normal and 
shear contact stresses, as well as the equations for determining the dimensions of the stick and slip zones, 
have been obtained in [32,33]. 

An investigation of the problem in [33] enabled one to identify the dimensionless parameter &, = 
&/(2T&‘), which has a substantial effect on the pressure distribution, the size and displacement of the 
contact region, etc. Here, lo = eis the width of the contact region for elastic bodies characterized 
by the elasticity constants E and v. Diagrams of the pressure distribution&) = +J~(x) for a = 5 and 
different values of the parameter co are shown in Fig. 3. At low rolling velocities when the time of passage 
of the contact region is greater than the retardation time of the material (co + l), the pressure 
distribution and the size of the contact region approach the values corresponding to the case of an elastic 
material with a long-term modulus of elasticity. At high velocities (&, + l), the pressure distribution 
and the size of the contact region again approach the values corresponding to the case of an elastic 
material, but with an instantaneous modulus of elasticity. When co - 1, the greatest displacement of 
the contact region relative to the axis of symmetry of the cylinder is observed and, at the same time, 
the asymmetry of the diagram of the pressure on it also increases. 

As a result of the pressure asymmetry, a moment of rolling resistance M arises. The characteristic 
dependence of the coefficient of rolling friction l.tr = M/(PR) on the parameter <a for the case of free 
rolling (T = 0) is shown in Fig. 4 for different value of a. It follows from an analysis of the results that 
the relaxation and retardation of the materials of the interacting bodies manifest themselves during 
rolling when the time of passage of the contact region is comparable with the relaxation time (co - l), 
which is in agreement with the conclusions drawn in [30,31] and, also, with the dependence of the force 
of rolling friction on the velocity of motion of the roller obtained by Ishlinskii [2]. 

Graphs of the dependence of the length of the stick zone on the parameter co, obtained in [32,33] 
when solving the problem of a viscoelastic cylinder of radius R rolling on a base made of the same 
material when there is partial slip in the contact region are shown in Fig. 5 for different values of the 
parameter T* = T/(pP). The length of the stick zone increases as T* decreases and, also, when the 
parameter <a increases. 

The dependences of parameter r” on the relative slip 6 (creep curves) are shown in Fig. 6 for different 
value of the parameter <a, T 2 0. The curves were constructed for a = 10 and different values of the 
parameter [,,. It can be concluded from the results of the calculations that, for a hxed value of T/(pP), 
the magnitude of the relative slip decreases as the parameter co decreases (as the velocity I/increases). 
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Moreover, the curve constructed for &, = lo2 practically coincides with the graph of the function (2.4) 
which corresponds to an elastic cylinder, with a modulus of elasticity E and Poisson’s ratio v, rolling 
on a base made of the same material. 

The solution of the problem being considered [22] enabled the combined effect of the two basic sources 
of rolling friction, that is, the relaxation and retardation of materials, as well as the partial slip of the 
interacting surfaces in the contact region (and, correspondingly, the coefficient of sliding friction) on 
the contact characteristics and the coefficient of rolling friction to be considered for the special case 
when the interacting bodies are made of identical materials. 

Other solutions of contact problems, in different formulations, of the rolling of bodies made of 
viscoelastic materials are also known [18, 341. 

4. THE ROLE OF THIN SURFACE LAYERS IN 
ROLLING FRICTION 

The properties of the surface and of surface layers which are substantially different from the properties 
of the bulk material have a significant effect on the friction characteristics. Under practical conditions 
(on railway tracks, for example) the observed slip coefficients are lower than those determined 
theoretically, which is explained, in particular, by the presence on the interacting surfaces of thin films 
of oils or other types of contaminants [35]. The solutions of contact problems for layered media are 
used when analysing surfaces covered by thin solid layers or films. In this case, the rheological properties 
of the surface layers are taken into account when formulating the contact problems by modelling the 
surface layer by a viscoelastic medium. A problem in two-dimensional formulation on the motion of a 
load along the boundary of a viscoelastic strip bonded to a viscoelastic half-plane has been treated in 
[36] using the Fourier transform method, and the strains and shear stresses in the layer and the base 
were investigated. The contact interaction in the rolling of two cylinders coated with viscoelastic layers 
has been studied theoretically and experimentally in [37,38]. In these papers, numerical methods were 
developed to determine the stresses in contact problems for layered elastic and viscoelastic bodies. Note 
that the solution of the problem of a rigid cylinder rolling along a viscoelastic base obtained by Ishlinskii 
[2] enables one to estimate the effect of the rheological properties of the surface layer on the force of 
rolling resistance, if it is assumed that the modulus of elasticity of the base is much greater than the 
modulus of elasticity of the layer (that is, assuming that the base is absolutely rigid). 

A contact problem in a two-dimensional formulation for an elastic cylinder and a base, consisting of 
a viscoelastic layer 2 of thickness h bonded to an elastic half-plane 3 (Fig. 1) has been considered in 
[39,40]. The cylinder rolls at a constant linear velocity Vand angular velocity o. The contacting surface 
of the cylinder is described by the functionf(x) = -x2/(2@ (R is the radius of the cylinder). 

In the case of the steady motion of the cylinder in the system of coordinates (x, y), the boundary 
conditions in the contact region have the form (1.1)-(1.4). In order to describe the normal and tangential 
compliance of the layer, assuming that the thickness h of the viscoelastic layer is much less than the 
width (a + b) of the contact region, the one-dimensional Maxwell model was used, namely 

where u, and z+ are the displacements of the boundary of the layer along the tangent and normal to 
the surface (Jo = 0), a dot denotes a time derivate, and E,(E,) and T,(TJ are the modulus of elasticity 
and the relaxation time of the layer in the direction of they axis (x axis) respectively. This model is an 
analogue of the rod model of an elastic body proposed by Ishlinskii [3]. 

In order to determine the contact pressure distributionp(Q, the length L and the shift E of the contact 
region, as well as the maximum penetration A,, of the cylinder into the viscoelastic layer, a Fredholm 
integral equation of the second kind was obtained 

jFCS.)[hlc-s’I +qsgn(c-c)- yln(l +c)- 

(4.2) 

as well as the relations 
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I,=2p= 
nRE* 

-1 
1 

E = ~IF(5)[(1+5)ln(l+5)+(1-5)ln(l-5)-n,5]~~ 
-1 

A u&J 
max = max-= 

-acx<b R 

where 

(4.3) 

(4.4) 

Here Ei and Vi are the moduli of elasticity and Poisson’s ratios of the materials of the cylinder (i = 1) 
and of the base (i = 3). The solution of Eq. (4.2) is presented and an analysis of the results is given in 
[3941]. 

Note that, if the elasticity of the cylinder and the base is neglected and the pressure in the contact 
region is determined from the solution of Eq. (4.1) with boundary conditions (1.4), we obtain the 
following expression for the dimensionless contact pressure 

(4.5) 

where 5 is the Deborah number, which is the ratio of the relaxation time T, of the material of the layer 
to the time required for an element to traverse half the width of the contact region, that is, (a + b)/2 
(see [IS]). Expression (4.5) determines the distribution of the contact pressure in the case when the 
compliance of the layer in the normal direction is much greater than the compliances of the base and 
the cylinder that is, E,,/E* 6 1. 

Graphs of the function of the contact pressurep(Qlps, whereps = E*L/2 is the Hertz maximum contact 
pressure, constructed for p, = 0.1 and different values of the parameter a,, are shown in Fig. 7. The 
solid curves correspond to the general case of the contact interaction of elastic bodies when there is a 
viscoelastic layer between them, and the dashed curves were constructed using formula (4.5) in the case 
when the elastic properties of the indentor and the base are neglected. Calculation were carried out 
for a constant width of the contact region L = 0.1, and the load acting on the cylinder was varied. The 
results show that, as the velocity I/ of the indentor is reduced, that is, as the parameter a, increases 
(see (4.4)), the pressure distribution diagram p(s) becomes more asymmetrical. In the case of a fixed 
contact region and specified viscoelastic characteristics of the layer, the contact pressures and their 
maximum values depend very much on the elastic properties of the indentor and the base when the 
parameter a, is small (high velocities V’). However, when the velocity is reduced (an = lo), the difference 
between the pressure distribution in the two cases becomes negligibly small. A viscoelastic layer therefore 
has a decisive effect on the distribution of the contact pressure at low velocities of motion. 

It was concluded on the basis of the results of calculations that, as the parameter T,V/R is increased, 
the half-width of the contact region decreases and tends to a constant value. For small values of the 
parameter T,V/R, the length of the contact region becomes substantially greater, particularly when the 
parameter p, increases, which depends on the thickness of the layer and the relative elastic characteristics 
of the layer and the base. As the relaxation time T,, becomes shorter and the velocity V of motion of 
the indentor is reduced, the displacement E of the contact region and the maximum penetration Amax 
of the cylinder into the viscoelastic layer increase, which is due to the manifestation of the rheological 
properties of the surface layer. When the relaxation time or the velocity V are increased, the shift E of 
the contact region becomes negligibly small for all values of the parameter p,. 

The above analysis of the contact pressure distribution and also of the position and dimensions of 
the contact region, holds both for slip and for rolling of a cylindrical elastic indentor on an elastic base 
coated with a thin viscoelastic layer. 
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To determined the shear stress distribution z(x) in the stick zone (LQ, the following integral equation 
was obtained [39] 

b 
h h dz(x) 

--T(X)+---&+ 
VW, E, dx 

z(x’) dx’ 
x - x’ 

-a 
(4.6) 

where 

* = AE* (1-2v,)(l +v,) (1-2v,)(l +v,) 
2 [ E, - E3 I 

This equation was reduced [4] to the following Fredholm integral equation of the second kind for 
determining the function q(s) = r’(q) 

cp(cJ = 09 5 E Q, (4.7) 

where 

(P(5) = -6+rlp(S)+~*(S)-i[lniS-S’,+~sgn(S-S.)]4(5.)dS 
-1 (4.8) 

Furthermore, the shear stresses satisfy the inequality ] 7(k) ] < @(Q in the stick zone (QJ. From 
Eq. (4.7) and the conditions that, in the slip zones (C&2,), the shear stresses are opposite to the slip 
direction, that is 

G) = f-&S)wcpG>. 5 E Q, (4.9) 

and that the condition of continuity of the stresses at the points &(i = 1.2, . . . , k) of transition from 
one zone to another, where (k + 1) is the total number of stick and slip zones, holds, an algorithm was 
constructed for calculating the shear stress in the contact region as well as for calculating the arrangement 
and sizes of the stick and slip zones [39]. An interactive process was used for the numerical analysis of 
the relations obtained. 

The problem of determining the shear stress is simplified considerably by assuming that the cylinder 
and the base have the same constants of elasticity (8 = 0) and that the modulus of elasticity of the 
layer is far less than the modulus of elasticity of the cylinder and the base, that is, EJE* % 1. In this 
case, the problem reduces to investigating ordinary differential equations, and its solution can be written 
in a simple analytical form [40]. 
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Analysis of the solution showed that, depending on the magnitude of the relative slip, the coefficient 
of sliding friction, the mechanical characteristics of the layer and the conditions of interaction (velocity, 
magnitude of the load and tangential force), the contact region can have two (stick and slip) or three 
(slip, stick and slip) zones, which distinguish the solution from the case of interaction when there is no 
viscoelastic layer and only two zones (stick and slip) in the contact region when an elastic cylinder rolls 
on a base made of the same material (6 = 0) [42]. 

The results of a calculation of the shear stresses in the contact region of a rolling cylinder with a base 
when there is a surface layer on it, based on an analysis of Eqs (4.7)-(4.9), are shown in Fig. 8. In this 
analysis, the properties of the viscoelastic layer are described by the parameter 8 = T,/T,,, which is a 
ratio of the relaxation times of the layer in the tangential and normal directions (0 = @,a,)/(&~)) 
and also by the dimensionless parameters a,, pn and p,_(see (4.4) and (4.8)). 

The graphs were constructed forJ& = 0.1, a, = 1, P = 0.01, u = 0.1, & = 0.1 and the following 
combinatmns of oth_er parameters: T = 0.6pP, 8 = _0.1,6 = 5.4 (curve I), T = O.SpP, 8 = 1, ti-= -0.4_ 
(curve 2),T = O.@P, 8 = 0.1, 6 = -0.4 (curve 3),T = O.SpP, 8 = 0.1, 6 = 0.4 (curve 4) andT = pP 
(curve 5). The results show that, as the parameter 8 increases, the value of the maximum contact shear 
stresses increase and the size of the stick zone decreases, For the same characteristics of the layer 
(& = 0.1 and 8 = O.l), a change in the elastic characteristics of the cylinder and base from 6 = -0.4 
(curve 3) to 19 = 0.4 (curve 4) involves a transition from three-zone contact to two-zone contact. 
Moreover, it has established that, as the magnitude of the tangential force 7 is reduced, the contact 
changes from complete sliding (curve 5) to the three-zone case and then to the two-zone case. 

The normal and shear contact stress distributions ( ] 5 ] s 1) have been used [43] to determine the 
stresses o, on the surface of the base (y = h) for a friction coefficient u = 0.5 when a,, = 10, 5 = 0.25, 
cz = 0.1, L = 0.1 and different values of the ratio T/P of the tangential force to the normal force 
(Fig. 9). As in the case of contact without a viscoelastic layer, the maximum tensile stress, in the case 
of a non-zero friction coefficient, occurs on the edge of the contact region whenx = a(5 = -1) and 
the maximum compressive stress occurs within the contact region. The values of these maxima become 
greater as the horizontal load increases and, consequently, as the relative slip increases. The fact that 
there are no corner points on the curves at the places where a stick zone changes into a slip zone, which 
do occur on the analogous curves in the problem of a cylinder rolling on an elastic base without a surface 
layer, may explain the effect of a viscous layer. Moreover, when there is a surface layer, the maximum 
values of the tensile stresses are less than when there is no such layer, that is, the layer reduces the 
values of the maximum stresses which are capable of initiating the onset of the fracture of the material. 

When T = up, slip occurs over the whole contact region. The case when T = 0 corresponds to pure 
rolling. Note that, in the case of the model of a viscoelastic layer being considered (a Maxwellian body), 
the coefficient of rolling friction decreases monotonically as the parameter T,V/R increases and 
pr + 0 as T,,VIR + +=. 

The analysis carried out in [39, 411 shows that the imperfect elasticity of the surface layer has a 
considerable effect on the contact stress distribution accompanying the sliding and rolling of elastic 
bodies, particularly for small values of the parameter T,V/R and, at the same time, the dependence of 
the resistance to relative displacement of the bodies on the velocity is defined by the rheological 
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properties of the surface layer and, in particular, by the model which is chosen to describe these 
properties. When the Kelvin model is used, this dependence is quite non-monotonic and the maximum 
value of the friction coefficient is reached at velocities of motion for which the time taken for the indentor 
to pass through the elementary contact spot is commensurate with the retardation time of the material 
of the surface layer [33,34]. The results of the investigations in [33,43] also indicate the substantial 
effect of the properties of the surface layer on the maximum shear and tensile stress distributions within 
the interacting bodies. 

Hence, theoretical research on the contact interaction of bodies under conditions of rolling friction, 
at the source of which are A. Yu. Ishlinskii’s papers, has progressed along a path of increasing complexity 
of the models of contacting bodies and the contact conditions. The results obtained in this field enable 
one to study the stressed state interacting bodies, which is important for the development of the theory 
of wear and contact-fatigue fracture of the surface layers of materials during rolling. 
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